
Concordia University 

Montreal, Canada

11 Jan. 2016

Kaveh Bakhtiyari

PhD Student at

University of Duisburg-Essen, Germany

&

The National University of Malaysia

Recommender Systems

in Future Intelligence



Concordia University, Montreal – 11 Jan. 2016

Index
• Introduction

• Collaborative Recommender 

System

– User-based Filtering

– Item-based Filtering

– Sparsity

– Netflix Prize

– Clustering

– Association Rules

– Matrix Factorization

– Pros & Cons

• Content-Based Filtering

– TF-IDF

– Pros & Cons

2

• Context-Aware RS

– Tensor Factorization

• Other Approaches

– Knowledge-Based RS

– Demographic RS

– Social & Trust RS

– Ranking

• Hybridization

• Evaluation Criteria

• New Research Areas

– HCI & AC

– Look, Think, Feel

– New features overview

• Future

• References

• Q&A



Concordia University, Montreal – 11 Jan. 2016

Information Overload

• “People read around 10 MB 

worth of material a day, 

hear 400 MB a day, and see 

1 MB of information every 

second” - The Economist, November 

2006.

• In 2015, consumption will 

raise to 74 GB a day - UCSD 

Study 2014

3
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Recommendation

• CNN Money, “The race to create a 'smart' Google”:

• The Web, they say, is leaving the era of search and entering one of 
discovery. What's the difference? Search is what you do when 
you're looking for something. Discovery is when something 
wonderful that you didn't know existed, or didn't know how to ask 
for, finds you.

4
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What is Recommender System?

• Recommender Systems (RS) generate a list of items (or people) to 

be recommended to the users. These systems predict the rating of 

the item which the user would give.

• Estimate a utility function to predict how a user will like an item.

Introduction 5
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Introduction

Why is Recommender System important?

• Netflix: 2/3 of the movies watched are recommended

• Google News: recommendations generate 38% more click-

through

• Amazon: 35% sales from recommendations

• Choicestream: 28% of the people would buy more music if 

they found what they liked.
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RS as a research area

• Recommender Systems 

(RS) was being discussed 

in Data Mining and 

Information Filtering 

(Information Retrieval) 

areas, but it has been 

chosen as a separate 

research area in 1990s 

and it is becoming very 

popular.

Introduction 7
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Common Recommender Systems Approaches

• Collaborative Filtering

• Content-based Filtering

• Context-aware

• Demographic

• Social Recommendation (trust-aware)

• Hybrid

Approaches 8
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Steps:

• 1. Identify set of ratings for the target/active user

• 2. Identify set of users most similar to the target/active user 

according to a similarity function (neighborhood formation)

• 3. Identify the products these similar users liked

• 4. Generate a prediction - rating that would be given by the 

target user to the product - for each one of these products

• 5. Based on this predicted rating recommend a set of top N 

products

Collaborative Filtering 10
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• Memory-Based
– User-based CF

– Item-based CF

• Model-Based
– Clustering (Classification)

– Association rules

– Matrix Factorization

– Restricted Boltzmann Machines (RBM)

– Probabilistic Latent Semantic Analysis

CF Approaches 11
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• Target user u, ratings matrix Y

• yv,i → rating by user v for item i

• Similarity Pearson correlation sim(u,v) between 

users u & v

• Predicted rating y*(u,i)

User-Based CF 12
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User-Based CF: Example 13
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User-Based CF: Example 14
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• Target item i

• yu,j → rating of user u for item i

• Similarity sim(i,j) between item i and j (Pearson 

correlation).

• Predicted rating y*(u,i)

Item-Based CF 15
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Item-Based CF: Example 16
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Item-Based CF: Example 17
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• Pearson correlation-based similarity

– does not account for user rating biases

• Cosine based similarity

– does not account for user rating biases

• Adjusted cosine similarity

– takes care of user rating biases as each pair in the co-
rated set corresponds to a different user.

Similarity Computation 18
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Collaborative Filtering
Sparsity Problem:

• Typically large product sets & few user ratings e.g. Amazon:

• in a catalogue of 1 million books, the probability that two users who 

bought 100 books each, have a book in common is 0.01

• in a catalogue of 10 million books, the probability that two users 

who bought 50 books each, have a book in common is 0.0002

• Netflix Prize rating data in a User/Movie

matrix:

– 500,000 x 17,000 = 8,500 M positions

– Out of which only 100M are not 0's!

• CF must have a number of users ~ 10%

of the product catalogue size

19
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• Looking for: High quality recommendation

• Evaluation metric: RMSE

Accuracy Improvement by 10%

=

1,000,000$

Netflix Prize 20
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• 2007 Top Algorithms:

• SVD: RMSE = 0.8914

• RBM: RMSE = 0.8990

• Linear Blend: RMSE = 0.88

• 2008 Top Algorithm:

• SVD++ RMSE = 0.8567

• Limitations:

• Designed for 100M ratings (the actual number of 

ratings was 10B ratings)

• Not adaptable as users add new ratings

• Performance issues

Netflix Prize 21
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Model-Based Collaborative Filtering:

• Clustering

• Association rules

• Matrix Factorization

• Restricted Boltzmann Machines (RBM)

Solution to Sparsity 22
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• Customers B, C and D are « clustered » together.

• Customers A and E are clustered into another separate group

• «Typical» preferences for CLUSTER are:

• Book 2, very high

• Book 3, high

• Books 5 and 6, may be recommended

• Books 1 and 4, not recommended at all

Clustering 23
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• Any customer that shall be classified as a member 

of CLUSTER will receive recommendations based 

on preferences of the group:

• Book 2 will be highly recommended to Customer F

• Book 6 will also be recommended to some extent

Clustering 24
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Past purchases used to find relationships of common purchases

Association Rules 25
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Matrix Factorization 26
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Pros:

• Requires minimal knowledge engineering efforts

• Users and products are symbols without any internal 

structure or characteristics

• Produces good-enough results in most cases

Cons:

• Sparsity Problem: Requires a large number of reliable “user 

feedback data points” to bootstrap

• Requires products to be standardized (users should have 

bought exactly the same product)

• Assumes that prior behavior determines current behavior 

without taking into account “contextual” knowledge (session-

level)

Collaborative Filtering 27
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• A pure content-based recommender system makes recommendations 

for a user based solely on the profile built up by analyzing the content 

of items which that user has rated in the past.

• What is content?

• It can be explicit attributes or characteristics of the item. For example 

for a film:

– Genre: Action / adventure

– Feature: Bruce Willis

– Year: 1995

• It can also be textual content (title, description, table of content, etc.)

– Several techniques to compute the distance between two textual documents

– Can use NLP techniques to extract content features

• Can be extracted from the signal itself (audio, image)

Content-Based Filtering 29
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• “Importance” (or “informativeness”) of word kj in document dj is 

determined with some weighting measure wij

• One of the best-known measures in IR is the term frequency/inverse 

document frequency (TF-IDF)

• TF-IDF encodes text documents as weighted term vector

• TF: Measures, how often a term appears (density in a document)

– Assuming that important terms appear more often

– Normalization has to be done in order to take document length into account

• IDF: Aims to reduce the weight of terms that appear in all documents

Content-Based Filtering 30
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Pros:

• No community required

• No sparsity problem

• Can recommend new and unpopular items

• Easier to be explained

Cons:

• Content descriptions necessary

• Cold start for new users

• No surprises

• Suitable only for same type of items

Content-Based Filtering 31
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• Context is a dynamic set of factors describing the 

state of the user at the moment of the user's 

experience

• Context factors can rapidly change and affect how the 

user perceives an item

Type of Context:

• Temporal: Time of the day, week / weekend

• Spatial: Location, Home, Work, etc.

• Social: With friends, Family

Context-Aware RS 33
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Context-Aware RS 34
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Tensor Factorization 35
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Knowledge‐based: "Tell me what fits based on my needs“

Views:

• Case-based: Similarity functions

• Utility-based

• Constraint-based:

– IF purpose=“on travel” THEN lower focal length < 28mm

WHY:

• Low number of available rankings

• Timespan plays an important roles

• Customers want to define their requirements explicitly

– “The color of the car should be black"

Knowledge-Based RS 37
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Demographic RS
• Aim to categorize the user based on personal 

attributes and make recommendation based 

on demographic classes

38
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Social & Trust RS

• A social recommender system recommends items 

that are “popular” in the social proximity of the 

user

• In the context of recommender systems, trust is 

generally used to describe similarity in opinion

• Use trust to give more weight to some users

• Use trust in place of (or combined with) similarity

• Publicly available dataset: epinions dataset

39
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Ranking
• Most recommendations are presented in a sorted list

40
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Hybridization 42



Concordia University, Montreal – 11 Jan. 2016

Index
• Introduction

• Collaborative Recommender 

System

– User-based Filtering

– Item-based Filtering

– Sparsity

– Netflix Prize

– Clustering

– Association Rules

– Matrix Factorization

– Pros & Cons

• Content-Based Filtering

– TF-IDF

– Pros & Cons

43

• Context-Aware RS

– Tensor Factorization

• Other Approaches

– Knowledge-Based RS

– Demographic RS

– Social & Trust RS

– Ranking

• Hybridization

• Evaluation Criteria

• New Research Areas

– HCI & AC

– Look, Think, Feel

– New features overview

• Future

• References

• Q&A



Concordia University, Montreal – 11 Jan. 2016

• Accuracy

– RMSE, MAE, 

Precision, Recall, F1

• Coverage

• Novelty

• Diversity

• Reliability

• Serendipity

Evaluation Criteria
• Utility

• Robustness & Stability

• Privacy

• Adaptivity

• Scalability

• Trust

• Confidence

• Risk

44

Every single criterion is a research challenge!!!
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Human-Computer Interactions

Affective Computing

New research areas 46
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Implicit data collection:

• Analysis of human-computer interaction features such as

mouse movements, keyboard keystroke dynamics, and

touch-screen interactions.

• Analysis of users’ cultural backgrounds.

• Analysis of users’ emotional states (Emotional Intelligence)

HCI & AC

Image Source: Cheese Project, MIT University

47
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- What is the user looking at?

- Eye Tracking:

Image Processing High Computational Cost

Requires Web Cam

Privacy Issues

- What is the user thinking about?

- EEG Device

- How is the user feeling about?

- Affective Computing:

- (Facial Expressions)

- (Skin Conductance)

- (Heart Rate)

- (Wearable devices)

- etc.

Look, Think, Feel 48
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Future

Here is the future of personalized 

content (computational advertising) by 

Recommender System and Artificial 

Intelligence……

51
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Q&A

Thank you for your attention.
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